24 research outputs found

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    ECG-Analyzing Experimental System Based on Virtual Instrument

    No full text

    Comparison of discrete wavelet and Fourier transforms for ECG beat classification

    No full text

    A Hybrid Image Compression Technique Using Neural Network and Vector Quantization With DCT

    No full text

    A Rough Set Based Approach for ECG Classification

    No full text
    An inference engine for classification of Electrocardiogram (ECG) signals is developed with the help of a rule based rough set decision system. For this purpose an automated data extraction system from ECG strips is being developed by using a few image processing techniques. A knowledge base is developed after consulting different medical books as well as feedback of reputed cardiologists on interpretation and selection of essential time-plane features of ECG signal. An algorithm for extraction of different time domain features is also developed with the help of differentiation techniques and syntactic approaches. Finally, a rule-based rough set decision system is generated using these time-plane features for the development of an inference engine for disease classification. Two sets of rules are generated for this purpose. The first set is for general separation between normal and diseased subjects. The second set of rules is used for classifications between different diseases
    corecore